
Future Generation Computer Systems 17 (2001) 823–834

DNA computing in vitro and in vivo�

Lila Kari∗
Department of Computer Science, University of Western Ontario, London, Ont., Canada N6A 5B7

Abstract

This is a review paper addressing two main aspects of DNA computing research: DNA computing in vitro (in the test tube) and
in vivo (in a living organism). We describe the first successful in vitro DNA computing experiment [L.M. Adleman, Science 266
(1994) 1021–1024] which solved a mathematical problem, the Directed Hamiltonian Path Problem, solely by manipulation
of DNA strands in test tubes. We then address DNA computing in vivo by presenting a model proposed by Head [in: G.
Rozenberg, A. Salomaa (Eds.), Lindenmayer Systems, Springer, Berlin, 1991, pp. 371–383] and also by Landweber and Kari
[in: L. Kari, H. Rubin, D.H. Wood (Eds.), Biosystems, Vol. 52, Nos. 1–3, Elsevier, Amsterdam, 1999, pp. 3–13] and developed
by Landweber and Kari [in: L.F. Landweber, E. Winfree (Eds.), Evolution as Computation, Springer, Berlin, 1999], for the
homologous recombinations that take place during gene rearrangement in ciliates. Results given by Kari, Kari and Landweber
[in: J. Karhumaki, H. Maurer, G. Paun, G. Rozenberg (Eds.), Jewels are Forever, Springer, Berlin, 1999, pp. 353–363]
and Landweber and Kari [in: L.F. Landweber, E. Winfree (Eds.), Evolution as Computation, Springer, Berlin, 1999] have
shown that a generalization of this model that assumes context-controlled recombinations has universal computational power.
We review results obtained by Kari and Kari [in: Words, Sequences, Languages: Where Computer Science, Biology and
Linguistics Meet, Kluwer Academic Publishers, The Netherlands, in press] on properties of context-free recombinations
and characterize the languages generated by context-free recombination systems. As a corollary, we show [J. Kari, L. Kari,
in: Words, Sequences, Languages: Where Computer Science, Biology and Linguistics Meet, Kluwer Academic Publishers,
The Netherlands, in press], that context-free recombinations are computationally weak, being able to generate only regular
languages. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: DNA computing; In vitro computing; In vivo computing

1. Introduction

DNA computing, known also under the name of
bio-molecular computing or molecular computing, is
a new computational paradigm which proposes the
use of bio-molecules, mainly DNA, for computational
purposes. The main idea behind DNA computing
is based on two observations. Firstly, a naturally

� Research partially supported by Grant R2824AO1 of the Natural
Sciences and Engineering Research Council of Canada.

∗ Website address: www.csd.uwo.ca/∼lila.
E-mail address: lila@csd.uwo.ca (L. Kari).

occurring DNA strand is a succession of four different
building blocks, called bases, arranged in a certain
order that depends on the organism to which the DNA
belongs. While in nature the order in which the bases
occur determines the genetic information dictating
the type of organism and its development, these bases
can also be chemically synthesized and combined in
strands. This puts at our disposal a four-letter alphabet
with which, instead of “writing” genetic information,
we can “write” suitably encoded numbers, inputs,
intermediate data and outputs of computations. Sec-
ondly, the molecular biology laboratory is a rich
tool-chest of techniques that have been developed to

0167-739X/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0 1 6 7 -7 3 9X(00)00061 -3

824 L. Kari / Future Generation Computer Systems 17 (2001) 823–834

manipulate and recombine DNA strands. Recently, it
has been shown that these tools can also be used to
simulate and perform computational processes.

This is a review paper mostly based on [10,11] that
aims to give an overview of DNA computing by add-
ressing two of the main aspects of DNA computing
research: DNA computing in vitro and in vivo. The
paper is organized as follows. Section 2 briefly intro-
duces basic molecular biology notions like the struc-
ture of DNA and the main laboratory techniques used
in DNA computing. Section 3 describes Adleman’s in
vitro (test tube) experiment [1] solving the Directed
Hamiltonian Path Problem by manipulations of DNA
strands. This section also explains in more detail
some of the laboratory techniques that have been used
in this experiment. Section 4 introduces the problem
of in vivo (in the living organism) DNA computing
by describing the process of gene unscrambling in
ciliates [14] and its computational potential. The pro-
cess entails inter- and intra-molecular recombination
of DNA strands for which a formal model is defined
[6,14]. It is then shown that, under some additional
assumptions, a computational model based on these
recombination operations, called guided recombina-
tion system, has the computational power of a Turing
machine [15]. These assumptions consist of hypothe-
sizing that the presence of certain control sequences,
called contexts, is necessary to determine whether or
not recombinations take place.

The presence of contexts that guide recombination,
while consistent with the biological data, is not a cer-
tainty. In fact, the exact details of the mechanism of
gene rearrangement in ciliates are still unknown [21].
Section 5 drops these assumptions and considers com-
putational systems where recombinations are not con-
trolled by contexts [11]. Besides studying properties
of these recombinations, the main result of this section
proves that such systems are computationally weak,
having the power to generate only regular languages.
This is one more indicator that most probably some
kind of control factor, be it presence of contexts or
something else, is necessary for correct recombination
during the gene unscrambling process.

In any case, the results in Sections 4 and 5 demon-
strate the computational capacity of in vivo DNA
computing, which might potentially be harnessed
for our own computational needs. Finally, Section
6 presents some arguments in favour of using DNA

rather than electronic computers for some computa-
tional purposes.

2. Molecular biology notions

DNA (deoxyribonucleic acid) is found in every
cellular organism as the storage medium for gene-
tic information. It is composed of units called
nucleotides, distinguished by the chemical group, or
base, attached to them. The four bases are adenine,
guanine, cytosine and thymine, abbreviated as A, G,
C, and T. (The names of the bases are also commonly
used to refer to the nucleotides that contain them.)
Single nucleotides are linked together end-to-end to
form DNA strands. A short single-stranded polynu-
cleotide chain, usually less than 30 nucleotides long,
is called an oligonucleotide (or, shortly, oligo). The
DNA sequence has a polarity: a sequence of DNA
is distinct from its reverse. The two distinct ends of
a DNA sequence are known under the name of the
5′ end and the 3′ end, respectively. Taken as pairs,
the nucleotides A and T, and the nucleotides C and
G are said to be complementary. Two complemen-
tary single-stranded DNA sequences with opposite
polarity will join together to form a double helix in a
process called base-pairing or annealing. The reverse
process — a double helix coming apart to yield its two
constituent single strands — is called melting [10].

A single strand of DNA can be likened to a string
consisting of a combination of four different symbols:
A, G, C, T. Mathematically, this means we have at
our disposal a four-letter alphabet X={A,G,C,T} to
encode information. Concerning the operations that
can be performed on DNA strands, the existing mod-
els of DNA computation are based on various combi-
nations of the following primitive bio-operations [10]:

• Synthesizing a desired polynomial-length strand.
• Mixing. Pour the contents of two test tubes into a

third.
• Annealing(hybridization). Bond together two

single-stranded complementary DNA sequences by
cooling the solution.

• Melting(denaturation). Break apart a double-
stranded DNA into its single-stranded components
by heating the solution.

• Amplifying(copying). Make copies of DNA strands
by using the polymerase chain reaction (PCR).

L. Kari / Future Generation Computer Systems 17 (2001) 823–834 825

• Separating the strands by size using a technique
called gel electrophoresis.

• Extracting those strands that contain a given pattern
as a substring by using affinity purification.

• Cutting DNA double-strands at specific sites by
using commercially available restriction enzymes.

• Ligating. Paste DNA strands with compatible sticky
ends by using DNA ligases.

• Substituting. Substitute, insert or delete DNA
sequences by using PCR site-specific oligonu-
cleotide mutagenesis.

• Detecting and reading a DNA sequence from a
solution.

The bio-operations listed above and possibly others
will then be used to write molecular programs which
receive a tube containing DNA strands as input and
return as output a set of tubes [2]. A computation con-
sists of a sequence of tubes containing DNA strands.

For further details of molecular biology termino-
logy, the reader is referred to [4,10,13].

3. Adleman’s in vitro DNA algorithm

The practical possibilities of encoding informa-
tion in a DNA sequence and of performing simple
bio-operations were used in [1] to solve a seven-node
instance of the Directed Hamiltonian Path Problem
by an in vitro DNA experiment. A directed graph G
with designated vertices vin and vout is said to have a
Hamiltonian path if and only if there exists a sequence
of compatible “one-way” edges e1, e2,. . . , ez (i.e. a
path) that begins at vin, ends at vout and enters every
other vertex exactly once.

The following (nondeterministic) algorithm solves
the problem:

Step 1. Generate random paths through the graph.
Step 2. Keep only those paths that begin with vin
and end with vout.
Step 3. If the graph has n vertices, then keep only
those paths that enter exactly n vertices.
Step 4. Keep only those paths that enter all of the
vertices of the graph at least once.
Step 5. If any paths remain, say “YES”; otherwise
say “NO”.

To implement Step 1, each vertex of the graph was
encoded into a random 20-nucleotide strand (20-letter

sequence) of DNA that was synthesized. Then, for
each (oriented) edge of the graph, a DNA sequence
was synthesized consisting of the second half of the
sequence encoding the source vertex and the first half
of the sequence encoding the target vertex.

Synthesis of a desired DNA strand is accomplished
as follows. In standard solid-phase DNA synthe-
sis, a desired DNA molecule is built up nucleotide
by nucleotide on a support particle in sequential
coupling steps. For example, the first nucleotide
(monomer), say A, is bound to a glass support. A
solution containing C is poured in, and A reacts with
C to form a two-nucleotide (2-mer) chain AC. After
washing the excess C solution away, one could have
the C from the chain AC coupled with T to form a
3-mer chain (still attached to the surface) and so on
[10].

Returning to Step 1 of the algorithm, by mixing
together single strands encoding the edges and sin-
gle strands encoding complements of vertices, DNA
sequences corresponding to compatible edges were
linked together.

Mixing is implemented by pouring the contents of
two test tubes into a third one to achieve union. Mixing
can be performed by rehydrating the tube contents (if
not already in solution) and then combining the fluids
together into a new tube, by pouring and pumping for
example.

Linking together of the compatible edges was
realized as follows. By construction, a complement of
a vertex strand would bind to both a strand encoding
an edge entering the vertex, and a strand encoding an
edge exiting the vertex. Hence, the ligation reaction
resulted in the formation of DNA molecules encoding
random paths through the graph. In this process, both
annealing and ligation played a role.

Annealing consists in binding together two
single-stranded complementary DNA sequences by
cooling the solution. Annealing in vitro is also known
as hybridization.

Ligation amounts to pasting DNA strands with
compatible sticky ends by using DNA ligase. A DNA
double-strand can either have blunt ends, i.e. be fully
double-stranded or can be partially double-stranded,
i.e. it can have single-stranded overhanging ends
(called sticky ends) at one or both of its extremities.
The enzyme DNA ligase joins together, or ligates, the
end of a DNA strand to another strand. DNA ligase

826 L. Kari / Future Generation Computer Systems 17 (2001) 823–834

either ligates two blunt-ended double strands or two
strands with compatible sticky ends [13].

To implement Step 2, the product of Step 1 was
amplified by PCR. Thus, only those molecules encod-
ing paths that begin with vin and end with vout were
amplified.

Amplifying (copying) consists in making copies of
DNA strands by using the PCR that uses the DNA
polymerase enzyme. The DNA polymerases perform
several functions including replication of DNA. The
replication reaction requires a guiding DNA single
strand called template and a shorter oligonucleotide
called primer that is annealed to it. Under these con-
ditions, DNA polymerase catalyzes DNA synthesis
by successively adding nucleotides to one end of the
primer. The primer is thus extended in one direction
until the desired strand that starts with the primer
and is complementary to the template is obtained
[10].

PCR is an in vitro method that relies on DNA poly-
merase to quickly amplify specific DNA sequences in
a solution. PCR involves a repetitive series of tempe-
rature cycles with each cycle comprising three stages:
denaturation of the guiding template DNA to separate
its strands, then cooling to allow annealing to the
template of the primer oligonucleotides, which are
specifically designed to flank the region of DNA of
interest, and finally, extension of the primers by DNA
polymerase. Each cycle of the reaction doubles the
number of target DNA molecules, the reaction giving
thus an exponential growth of their number [10].

For implementing Step 3, a technique called gel
electrophoresis was used, that makes possible the
separation of DNA strands by length. The molecules
are placed at the top of a wet gel to which an electric
field is applied, drawing them to the bottom. Larger
molecules travel more slowly through the gel. After
a period, the molecules spread out into distinct bands
according to size.

Step 4 was accomplished by iteratively using a
process called affinity purification. This process per-
mits single strands containing a given subsequence v
(encoding a vertex of the graph) to be filtered out
from a heterogeneous pool of other strands. After syn-
thesizing strands complementary to v and attaching
them to magnetic beads, the heterogeneous solution is
passed over the beads. Those strands containing v ann-
eal to the complementary sequence and are retained.

Strands not containing v pass through without being
retained [10].

To implement Step 5, the presence of a molecule
encoding a Hamiltonian path was checked. This was
done by amplifying the result of Step 4 by PCR and
then determining the DNA sequence of the amplified
molecules.

Detecting and reading (given the contents of a tube),
consist in saying YES if it contains at least one DNA
strand, and NO otherwise. PCR may be used to am-
plify the result and then a process called sequencing
is used to actually read the DNA strands in solution.
The basic idea of the most widely used sequencing
method is to use PCR and gel electrophoresis. As-
sume we have a homogeneous solution, i.e. a solution
containing mainly copies of the strand we wish to se-
quence, and very few contaminants (other strands). For
detection of the positions of As in the target strand, a
blocking agent is used that prevents the templates from
being extended beyond As during PCR. As a result of
this modified PCR, a population of subsequences is
obtained, each corresponding to a different occurrence
of A in the original strand. Separating them by length
using gel electrophoresis reveals the positions where A
occurs in the strand. The process can then be repeated
for each of C, G, and T, to yield the sequence of the
strand. Recent methods use four different fluorescent
dyes, one for each base, which allows all four bases
to be processed simultaneously. As the fluorescent
molecules pass a detector near the bottom of the gel,
data are output directly to an electronic computer [10].

4. In vivo DNA computing

The preceding section presented an example of in
vitro DNA computing. This and the following sec-
tion address the issue of in vivo DNA computing. We
namely describe a formal system intended to model
the guided homologous recombinations that take place
during gene rearrangement in ciliates, and study the
computational power of such a system.

Cilliates are a diverse group of a few thousand
types of unicellular eukaryotes (nucleated cells) that
emerged more than 109 years ago [21]. Despite their
diversity, ciliates remain united by two features: the
possession of a hair-like cover of cilia used for mov-
ing and food capture, and the presence of two nuclei

L. Kari / Future Generation Computer Systems 17 (2001) 823–834 827

[21]. The micronucleus is functionally inert and
becomes active only during sexual exchange of DNA,
while the active macronucleus contains the genes
needed for the development of the ciliate. When two
cells mate, they exchange micronuclear information
and afterwards develop new macronuclei from their
respective micronuclei.

In some of the few studied ciliates, the protein-
coding segments of the genes (or MDSs for macronu-
clear destined sequences) are present also in the
micronucleus interspersed with large segments of
noncoding sequences (IESs for internally excised
sequences). Moreover, these segments are present
in a permuted order in the micronucleus. The func-
tion of the various eliminated sequences is unknown
and they represent a large portion of the micronu-
clear sequences: in the Oxytricha species ∼96% and
in Stylonychia lemnae ∼98% of the micronuclear
sequences are eliminated [21].

As an example, the micronuclear encoding of the
�TBP gene in Oxytricha nova is composed of 14
MDSs separated by IESs and arranged in the order
1–3–5–7–9–11–2–4–6–8–10–12–13–14, the proper
order being defined by 1–14 arrangement of the
spliced MDSs in the functional macronuclear gene
[16,21].

Instructions for unscrambling the micronuclear
gene are apparently carried in the gene itself [21].
At the end of each ith MDS (1≤i≤13) is a sequence
of 6–19 b.p. that is identical to a sequence preced-
ing the (i+1)th MDS (which occurs somewhere else
in the gene). Homologous recombinations between
these pairs of direct repeats (called also junction
sequences) will then join the MDSs in the correct
order and eliminate one member of each repeat
pair.

Before introducing the formal model of the recom-
binations that take place during gene rearrangement,
we summarize our notation. An alphabet � is a finite,
nonempty set. A sequence of letters from � is called
a string (word) over � and in our interpretation cor-
responds to a linear strand. The length of a word w
is denoted by |w| and represents the total number of
occurrences of letters in the word. A word with zero
letters in it is called an empty word and is denoted by
λ. The set of all possible words consisting of letters
from � is denoted by �∗, and the set of all nonempty
words by �+. We also define circular words over �

by declaring two words to be equivalent if and only if
(iff) one is a cyclic permutation of the other. In other
words, w is equivalent to w′ iff they can be decom-
posed as w=uv and w′=vu, respectively. Such a circu-
lar word •w refers to any of the circular permutations
of the letters in w. Denote by �• the set of all circular
words over �.

For a linear word w∈�∗, Pref(w)={x∈�∗|w=xv},
Suff(w)={y∈�∗|w=uy} and Sub(w)={z∈�∗|w=uzv}.

For a circular word •w∈�•, we define Pref(•w)=
Suff(•w)=∅ and

Sub(•w) = {x ∈ �∗| •w = •uxv, u, v ∈ �∗}
as the set of prefixes and suffixes, respectively,
subwords of •w.

For more notions of formal language theory the
reader is referred to [22]. With this notation we
introduce several operations studied in [14,15] in the
context of gene unscrambling in ciliates.

Definition 1. If x∈�+ is a junction sequence, then the
recombinations guided by x are defined as follows:

(1) uxv+u′xv′⇒uxv′+u′xv (linear/linear) (Fig. 1),
(2) uxvxw⇒uxw+•vx (linear/circular) (Fig. 2),
(3) •uxv + •u′xv′ ⇒ •uxv′u′xv (circular/circular)

(Fig. 3).

Note that all recombinations in Definition 1 are
reversible, i.e. the operations can be performed also in
the opposite directions.

For example, operation (2) in Fig. 2 models the
process of intramolecular recombination. After x
finds its second occurrence in uxvxw, the molecule
undergoes a strand exchange in x that leads to the
formation of two new molecules: uxw and a circular
DNA molecule •vx. Intramolecular recombination
accomplishes the deletion of either sequence vx or xv
from the original molecule uxvxw and the positioning
of w immediately next to ux. This implies that (2) can
be used to rearrange sequences in a DNA molecule
thus accomplishing gene unscrambling.

The above operations are similar to the “splic-
ing operation” introduced by Head [6] and “circular
splicing” and “mixed splicing” [7,18–20,23]. Refs.
[5,17] and subsequently Ref. [24] showed that some
of these models have the computational power of a
universal Turing machine (see [8] for a review).

828 L. Kari / Future Generation Computer Systems 17 (2001) 823–834

Fig. 1. Linear/linear recombination (from Ref. [11]).

To return to the biological reality we are modelling,
the question of how the cell discriminates between
sequences to be destroyed and sequences to be pre-
served is still unanswered [21]. Existing data suggest
that the presence of direct repeats alone is not enough
to guide the unscrambling process. Instructions for
unscrambling the genes are seemingly carried by the
gene itself [21] and they might be either structural
“instructions” or control factors like the presence of

Fig. 2. Linear/circular recombination (from Ref. [11]).

certain sequences in the vicinity of the direct repeats.
Indeed, in the coded �TBP gene in O. nova, the
model proposed by Mitcham et al. [16] conjectures
a spiral-like arrangement of the micronuclear strand
which would allow the physical alignment of the pairs
of direct repeats that guide the splicing in correct
order. In other cases, the excision of transposon-like
elements (which may qualify as IESs) is influenced
by the presence of certain sequences flanking the IES.

L. Kari / Future Generation Computer Systems 17 (2001) 823–834 829

Fig. 3. Circular/circular recombination (from Ref. [11]).

For example, in Tetrahymena and E. crassus species,
within the micronuclear DNA, the two ends of the
sequence to be eliminated are immediately flanked by
a specific 5-mer sequence which is a crucial element
of recognition [9,21].

Taking the latter type of “control” of recombination
into account, in [15] the strand operations in Defini-
tion 1 were generalized by assuming that homologous
recombination is influenced by the presence of certain
contexts. In particular, in [15] we defined the notion
of a guided recombination system based on operation
(2), Definition 1, with the additional constraint that
certain contexts need to be present in order for recom-
bination to occur. The main result in [12,15] proved
that such systems have the computational power of
a Turing machine, the most widely used theoretical
model of electronic computers. This implies that, in
principle, these unicellular organisms may have the
computational power of an electronic computer.

5. Context-free recombinations

The previous section discussed a computational
system modelling the recombinations taking place
during gene rearrangement in ciliates that makes the

assumption that recombinations are influenced by the
presence of contexts flanking the recombination sites.
However, this is not a certainty, but an assumption
which seems consistent with the biological data. In
fact, the exact details of the molecular machinery that
accomplishes unscrambling are unknown [21].

In this section, we review results in [11] that con-
sider the case where all types of recombinations
(linear/linear, linear/circular, circular/circular) are al-
lowed and moreover no context restrictions apply. We
study properties of such recombinations. This study
complements results obtained in [8,18–20,23] on lin-
ear splicing, circular splicing, self-splicing and mixed
splicing. The results obtained that the computational
power of context-free recombination systems is very
weak (which is unlikely), strengthen the conjecture
that the presence of direct repeats is insufficient for
accurate splicing during gene unscrambling.

In our intuitive image of context-free recombina-
tions, we can view strings as cables or “extension
cords” with different types of “plugs”. Given a set
of junction sequence J, each x∈J defines one type
of “plug”. Strings, both linear and circular, can then
be viewed as consisting of “elementary” cables that
only have plugs at their extremities. A circular strand
consists of elementary cables connected to form a

830 L. Kari / Future Generation Computer Systems 17 (2001) 823–834

loop. A recombination step amounts to the following
operations: take two connections using identical plugs
(the connections can be in two different cables or in
the same cable); unplug them; cross-plug to form new
cables.

In view of Lemma 3, we will assume, without loss
of generality, that all sets of plugs J are subword-free.

Definition 2 (Kari and Kari [11]). Let J⊆�+ be a
set of plugs. We define the set of elementary cables
(left elementary cables and right elementary cables,
respectively) with plugs in J as

EJ = (J�+ ∩ �+J)\�+J�+,

LJ = �∗J\�∗J�+,

RJ = J�∗\�+J�∗.

Note that an elementary cable in EJ is of the form
z1u=vz2, where z1, z2∈J are plugs. In other words, an
elementary cable starts with a plug, ends with a plug,
and contains no other plugs as subwords. The start and
end plug can overlap.

A left elementary cable is of the form wz, where
z∈J is a plug and wz does not contain any other plug
as a subword. In other words, if we scan wz from left
to right, z is the first plug we encounter.

Analogously, a right elementary cable is of the form
zw, where z∈J is a plug and wz does not contain any
other plug as a subword.

Definition 3 (Kari and Kari [11]). For a set of plugs
J⊆�+ and a linear word w∈�+, the set of elementary
cables with plugs in J occurring in w is defined as

EJ (w) = EJ ∩ Sub(w),

while the set of left and right elementary cables
occurring in w are respectively:

LJ (w) = LJ ∩ Pref(w),

RJ (w) = RJ ∩ Suff(w).

Note that LJ (w) and RJ (w) are both singleton sets.

Example 1 (Kari and Kari [11]). If �={a,b} and
J={b}, then LJ (aba)=ab, RJ (aba)=ba, EJ (aba)=∅.
Also, LJ (ab)=ab, RJ (ab)=b, EJ (ab)=∅ and LJ (ba)=b,
RJ (ba)=ba, EJ (ba)=∅.

Definition 4 (Kari and Kari [11]). For a set of plugs
J⊆�+ and a circular word •w∈�•, we define the
elementary cables occurring in •w as follows:

(1) If ∃x∈ J ∩ Sub(•w), the elementary cables with
plugs in J occurring in •w are defined as
EJ (•w)=EJ (www), LJ (•w)=RJ (•w)=∅.

(2) If J ∩ Sub(•w)=∅, then EJ (•w)=LJ (•w)=RJ

(•w)=∅.

Example 2 (Kari and Kari [11]). If �={a,b} and
J=(aba,baa), then EJ (•aba)={abaa,baaba}.

If �={a,b,c,d} and J={abc, bcdab}, then
EJ (•abcd)={abcdab,bcdabc}.

From the above examples, we see that in circular
words, start and end plugs are allowed to overlap.

The definitions for elementary cables, left and right
elementary cables can be easily generalized to lan-
guages. For a language L⊆�∗ ∪ �•,

EJ (L) =
⋃

w∈L

EJ (w), LJ (L) =
⋃

w∈L

LJ (w),

RJ (L) =
⋃

w∈L

RJ (w).

The following two lemmas introduces some prop-
erties of elementary cables.

Lemma 1 (Kari and Kari [11]). Given a set of plugs
J⊆�+,

(1) If u,v∈�∗ and u∈Sub(v), then EJ (u)⊆EJ (v).
(2) If u∈Pref(v), then LJ (u)=LJ (v).
(3) If u∈Suff(v), then RJ (u)=RJ (v).

Lemma 2 (Kari and Kari [11]). If x∈J is a plug, then

(1) EJ (uxv)=EJ ({ux, xv}),
(2) EJ (•ux)=EJ (xux),
(3) LJ (uxv)=LJ (ux),
(4) RJ (uxv)=RJ (xv).

The proposition below shows that recombination of
cables does not produce additional elementary cables,
i.e. the set of the elementary cables of the result string
equals the set of elementary cables of the strings en-
tering recombination.

Proposition 1 (Kari and Kari [11]). If J⊆�+ is a set
of plugs and x∈J, then

(1) EJ (uxvxw)=EJ (uxw) ∪ EJ (•vx),

L. Kari / Future Generation Computer Systems 17 (2001) 823–834 831

(2) EJ ({uxv, u′xv′})=EJ ({uxv′, u′xv}),
(3) EJ ({•uxv, •u′xv′})=EJ ({•uxv′u′xv}),
(4) LJ (uxvxw)=LJ ({uxw, •vx}),
(5) LJ ({uxv, u′xv′})=LJ ({uxv′, u′xv}),
(6) RJ (uxvxw)=RJ ({uxw, •vx}),
(7) RJ ({uxv, u′xv′})=RJ ({uxv′, u′xv}).

We are now ready to define the notion of a context-
free recombination system. This is a construction
whereby we are given a starting set of sequences
and a list of junction sequences (plugs). New strings
may be formed by recombinations among the exist-
ing strands: if one of the given junction sequences
is present, recombinations are performed as defined
in Definition 1. Recombinations are context-free, i.e.
they are not dependent on the context in which the
junction sequences appear. The language of the sys-
tem is defined as the set of all strands that can be thus
obtained by repeated recombinations starting from
the initial set.

Definition 5 (Kari and Kari [11]). A context-free
recombination system is a triple

R = (�, J, A),

where � is an alphabet and J⊆�+ is a set of plugs,
while A⊆�+ ∪ �• is the set of axioms of the system.

Given a recombination system R, for sets S,
S′⊆�+ ∪ �•, we say that S derives S′ and we write
S ⇒R S′ iff there exists x∈J such that one of the
following situations holds:

(1) ∃uxv, u′xv′∈S such that uxv+u′xv′⇒uxv′+v′xv
and S′=S∪{uxv′, u′xv},

(2) ∃uxvxw∈S such that uxvxw⇒uxw+•vx and
S′=S∪{uxw,•vx},

(3) ∃uxw, •vx∈S such that uxw+•vx⇒uxvxw and
S′=S∪{uxvxw},

(4) ∃•uxv, •u′xv′∈S such that •uxv+•u′xv′⇒
•uxv′u′xv and S′=S∪{• uxv′u′xv},

(5) ∃•uxv′u′xv∈S such that •uxv′u′xv⇒•uxv+•u′xv′
and S′=S∪{•uxv,•u′xv′}.

Definition 6 (Kari and Kari [11]). The language gen-
erated by a context-free recombination system R is
defined as

L(R) = {w ∈ �∗ ∪ �•|A ⇒R
∗S, w ∈ S}.

Lemma 3 (Kari and Kari [11]). For any context-free
recombination system R=(�, J, A), there exists a
context-free recombination system R′=(�, J′, A) such
that J′ is subword-free and L(R)=L(R′).

As a consequence of the preceding lemma we may
assume, without loss of generality, that a context-free
recombination system has a subword-free set J of
plugs. The following lemma will aid in the proof of
our main result.

Lemma 4 (Kari and Kari [11]). Let R=(�, J, A) be a
context-free recombination system. Let ux=x′u′ start
and end with plugs x′, x∈J, where u, u′ �=λ. If ux sat-
isfies EJ (ux)⊆EJ (A), then there exist α, β∈�∗ such
that αuxβ or •αuxβ is in L(R).

The theorem below shows that a context-free recom-
bination system characterized by a set of plugs J and a
set of axioms A has the following property. Any cable
that consists of elementary cables plugged together af-
ter each other and that is either linear or circular can be
obtained from the axioms using cross-plugging. Con-
versely, no other types of cables can be obtained from
the axioms.

Theorem 1 (Kari and Kari [11]). Let R=(�,J, A) be
a context-free recombination system. Then L(R)=X,
where

X={w∈�∗ ∪ �•| either EJ (w)=LJ (w)=RJ (w)=∅
and w∈A or EJ(w), LJ (w), RJ (w) are not all empty
and EJ (w)⊆EJ (A), LJ (w)⊆LJ (A), RJ (w)⊆RJ (A)}.

Proof. “X⊆L(R)”. Let w∈X. If EJ (w)=LJ (w)=RJ (w)
=∅ and w∈A, then w∈L(R). Assume now that w∈�∗,
is a linear word such that EJ (w), LJ (w), RJ (w)
are not all empty and EJ (w)⊆LJ (A), LJ (w)⊆LJ (A),
RJ (w)⊆RJ (A). If w contains only one plug x∈J, then
w=uxv and LJ (w)=ux, RJ (w)=xv. As LJ (w)⊆LJ (A),
there exists an axiom a1∈A ∩ �∗ such that a1=uxt. As
RJ (w)⊆RJ (A), there exists an axiom a2∈A ∩ �∗ such
that a2=sxv. We have a1+a2=uxt+sxv⇒uxv+sxt,
which implies that uxv=w∈L(R). If w contains more
than one plug, then w=uγ v, where γ=xl=rx′, x,x′∈J,
ux=LJ (w)⊆LJ (A) and x′v=RJ (w)⊆RJ (A). Conse-
quently, there exist axioms a1,a2∈A∩ �∗ such that
a1=uxt, a2=sx′v. By Lemma 4, there exist α,β∈�∗
such that αγβ or •αγβ is in L(R). We can then

832 L. Kari / Future Generation Computer Systems 17 (2001) 823–834

recombine

uxt + αγβ + sx′v = uxt + αxlβ + sx′v ⇒ uxlβ

+αxt + sx′v = urx′β + αxt + sx′v ⇒ urx′v
+αxt + sx′β = uγ v + αxt + sx′β,

or, in the circular case,

uxt + •αγβ + sx′v = uxt+ •αxlβ+sx′v ⇒ uxlβαxt

+sx′v = urx′βαxt + sx′v ⇒ urx′v
+sx′βαxt = uγ v + sx′βαxt,

In both cases, uγ v=w∈L(R). If •w∈�• is a circular
word that contains at least one plug (EJ (•w)�=∅) then
•w=•ux for some x∈J. The word xux satisfies the
conditions of Lemma 4 therefore axuxβ or •αxuxβ
is in L(R). Then we have either αxuxβ⇒•ux+αxβ
or •αxuxβ⇒•ux+•αxβ, which both imply that
•ux=•w∈L(R). For the converse inclusion “L(R)⊆X”,
note that if w∈L(R), EJ (w)=∅, LJ (w)=∅, RJ (w)=∅,
and w∈A, then by definition w∈X. Otherwise, if some
words in L(R) belong in X, the result of their recom-
binations have the necessary properties that ensure
their belonging to X by Proposition 1. Therefore,
L(R)⊆X. �

The theorem above leads to the conclusion of this
section after we show that the language X is regular
being accepted by a finite automation.

Definition 7 (Kari and Kari [11]). Given a finite
automaton F, the circular language accepted by F
denoted by L(F)• is defined as the set of all words
•w such that F has a cycle labelled by w.

The circular/linear language accepted by a finite
automaton F is defined as L(F) ∪L(F)•, where L(F) is
the linear language accepted by a finite automaton F
defined in the usual way.

Definition 8 (Kari and Kari [11]). A circular/linear
language L⊆�∗∪ �• is called regular if there exists
a finite automaton F such that F accepts the circular
and linear components of L, i.e. that accepts L∩�*
and L∩�•.

Theorem 2 (Kari and Kari [11]). Let J⊆�* be a set of
plugs and let A⊆�∗∪�• be a finite axiom set. Then the

set X defined as in Theorem 1 equals the linear/circular
language accepted by a finite automaton F.

Proof. If the set J is not finite, then we start by elim-
inating plugs that do not appear in any elementary
cables of A. As the axiom set A is finite, the number
of elementary cables is finite, and the set of (useful)
plugs is finite as well. Consequently, we can assume,
without loss of generality, that the set J is finite.

Let F=(S,�,δ,s0,sf) be a finite automaton
constructed as follows.

The set of states is

S = {sx |x ∈ J } ∪ {s0, sf },
and the transition relation δ is defined as follows:

(1) δ(sx ,u)=(sy | for each e=xu=vy∈EJ (A)},
(2) for each ux∈LJ (A), we have the transition

δ(s0,ux)=sx ,
(3) for each xu∈RJ (A), we have δ(sx ,u)=sf .

From the above construction and Theorem 1, one
can prove that L(F)=X. �

Theorem 2 shows that the context-free recombina-
tion systems are computationally weak, having only
the power to generate regular languages. This is one
more indicator that, most probably, the presence of
direct repeats does not provide all the information
needed for accurate splicing during gene rearrange-
ment in ciliates.

6. Conclusions

Besides the novelty of the approach, and in spite
of the technical difficulties that arise from the error
rates of bio-operations [3,10], there are several reasons
why computing with DNA might have advantages over
electronic computing. These include memory capacity,
massive parallelism, and power requirements.

Indeed, 1 �mol of DNA in 1 l of water contains
about 6.02×1017≈1018 strands (Avogadro’s number).
If we consider every strand as a processor, and that
operations take several minutes, say 1000 s, then such
a DNA-based computer would execute 1015 opera-
tions per second. In comparison, a modern 500 MHz
CPU with superscalar design executes on the order of
109 instructions per second. The Intel ASCI Teraflops
Computer currently being built by the United States

L. Kari / Future Generation Computer Systems 17 (2001) 823–834 833

Department of Energy’s Sandia National Labora-
tory and Intel Corporation (which is as big as a
good-sized starter home, weights about 44 ton and
requires 300 ton of air conditioning to cool it) can
achieve a peak performance of 1.8 teraflops (trillion
floating point operations per second) which is about
1012 operations per second. This means that, due to
its massive parallelism, a DNA computer could be
between a million times and a thousand times faster.

Considering the storage capacity, 1 �mol of DNA
has 1018 strands of DNA. If each strand has length
40, we can assume that each encodes 10 bytes. The
total storage space is thus 1019 bytes per liter of dilute
solution. Recently, a team of scientists and engineers
from IBM, which develops, manufactures and sells
data-storage products have achieved a density of 35
gigabits which means 4.375 GB or 4×109 bytes per
square inch. To encode the same information that can
be stored in 1 �mol of DNA using this technology,
one would need a surface of 2.5×109 in.2 which is
approximately 160 ha or 400 acres. The dilute DNA
solution containing the same data fits in a milk carton.

Concerning the power requirements, a laptop CPU
uses about 1 W and executes around 1 billion instruc-
tions per second achieving thus 1 billion operations
per Joule. In [1], it is estimated that a DNA based
medium has the potential to perform up to 20 billion
billions operations per Joule. This is an idealized num-
ber and probably does not include the energy required
to raise and lower temperatures, to mix solutions, to
run equipment, etc. However, even if the real number
is a million times larger, the DNA computer is still
1000 times more energy efficient.

The comparisons above, while based on preliminary
data, give a glimpse into why bio-molecules might
be a preferred medium for computations in some
applications. It is envisaged that the in vitro and the in
vivo DNA computing research of the kinds described
in this paper are preliminary steps that will ultimately
lead to making DNA computing a viable complemen-
tary tool for computation and/or provide more insight
into the computational capacity of live organisms.

Acknowledgements

We thank Sorin Drăghici and Eric VanDerLoo
for data and discussion on the comparison between

electronic and DNA computers, and Mark Daley for
Fig. 2.

References

[1] L.M. Adleman, Molecular computation of solutions to
combinatorial problems, Science 266 (1994) 1021–1024.

[2] L.M. Adleman, On constructing a molecular computer, in:
R.J. Lipton, E.M. Baum (Eds.), DNA Based Computers
I, Proceedings of a DIMACS Workshop, Princeton, 1995,
American Mathematical Society, Providence, RI, 1996,
pp. 1–22.

[3] M. Amos, A. Gibbons, D. Hodgson, Error-resistant imple-
mentation of DNA computation, in: L.F. Landweber, E.B.
Baum, (Eds.), DNA Based Computers II, Proceedings of
a DIMACS Workshop, Princeton, 1996, American Mathe-
matical Society, Providence, RI, 1998, pp. 87–101.

[4] C.R. Calladine, H.R. Drew, Understanding DNA: The Mole-
cule and How it Works, Academic Press, New York, 1999.

[5] E. Csuhaj-Varju, R. Freund, L. Kari, G. Paun, DNA
computing based on splicing: universality results, in: L.
Hunter, T. Klein (Eds.), Proceedings of the First Pacific
Symposium on Biocomputing, World Scientific, Singapore,
1996, pp. 179–190.

[6] T. Head, Formal language theory and DNA: an analysis of
the generative capacity of specific recombinant behaviors,
Bull. Math. Biol. 49 (1987) 737–759.

[7] T. Head, Splicing schemes and DNA, in: G. Rozenberg,
A. Salomaa (Eds.), Lindenmayer Systems, Springer, Berlin,
1991, pp. 371–383.

[8] T. Head, G. Paun, D. Pixton, Language theory and molecular
genetics, in: G. Rozenberg, A. Salomaa (Eds.), Handbook
of Formal Languages, Vol. 2, Springer, Berlin, 1997,
pp. 295–358.

[9] J.W. Jaraczewski, J. Frankel, Elimination of Tec elements in-
volves a novel excision process, Genes Dev. 7 (1970) 95–105.

[10] L. Kari, DNA computing — the arrival of biological mathe-
matics, Math. Intelligencer 19 (2) (1997) 9–22.

[11] J. Kari, L. Kari, Context-free recombinations, in: C.
Martin-Vide, V. Mitranu (Eds.), Words, Sequences, Langu-
ages: where Computer Science, Biology and Linguistics
Meet, Kluwer Academic publishers, The Netherlands, 2000,
in press.

[12] L. Kari, J. Kari, L.F. Landweber, Reversible molecular
computation in ciliates, in: J. Karhumaki, H. Maurer, G.
Paun, G. Rozenberg (Eds.), Jewels are Forever, Springer,
Berlin, 1999, pp. 353–363.

[13] L. Kari, R. Kitto, G. Gloor, A computer scientist’s guide
to molecular biology, in: G. Paun, T. Yokomori (Eds.), Soft
Computing, Springer, Berlin, in press.

[14] L.F. Landweber, L. Kari, The evolution of cellular computing:
nature’s solution to a computational problem, in: L. Kari, H.
Rubin, D.H. Wood (Eds.), Biosystems, Vol. 52, Nos. 1–3,
1999, Elsevier, Amsterdam, 1999, pp. 3–13.

[15] L.F. Landweber, L. Kari, Universal molecular computation
in ciliates, in: L.F. Landweber, E. Winfree (Eds.), Evolution
as Computation, Springer, Berlin, 1999.

834 L. Kari / Future Generation Computer Systems 17 (2001) 823–834

[16] J.L. Mitcham, A.J. Lynn, D.M. Prescott, Analysis of a
scrambled gene: the gene encoding �-telomere-binding
protein in Oxytricha nova, Genes Dev. 6 (1992) 788–800.

[17] G. Păun, On the power of the splicing operation, Int. J.
Comput. Math. 59 (1995) 27–35.

[18] D. Pixton, Linear and circular splicing systems, in: Procee-
dings of the First International Symposium on Intelligence
in Neural and Biological Systems, IEEE Computer Society
Press, Los Alamos, 1995, pp. 181–188.

[19] D. Pixton, Regularity of splicing, languages, Discrete Appl.
Math. 69 (1-2) (1996) 99–122.

[20] D. Pixton, Splicing in abstract families of languages, in
preparation.

[21] D.M. Prescott, The DNA of ciliated protozoa, Microbiol.
Rev. 58 (2) (1994) 233–267.

[22] A. Salomaa, Formal Languages, Academic Press, New York,
1973.

[23] R. Siromoney, K.G. Subramanian, V. Rajkumar Dare, Circu-
lar DNA and splicing systems, in: Parallel Image Analysis,
Lecture Notes in Computer Science, Vol. 654, Springer,
Berlin, 1992, pp. 260–273.

[24] T. Yokomori, S. Kobayashi, C. Ferretti, Circular splicing
systems and DNA computability, in: Proceedings of the
IEEE International Conference on Evolutionary Computation
’97, 1997, pp. 219–224.

Lila Kari received her MSc degree in
Mathematics/Computer Science at the
University of Bucharest, Romania. Her
PhD thesis on insertions and deletions
in formal languages, supervised by Arto
Salomaa, was awarded the Nevanlinna
Prize 1991 for the best PhD thesis in
Mathematics in Finland. After 2 years at
the University of Turku, Finland, she went
to the University of Western Ontario,

London, Canada, where she has been since. Complementing her
work on DNA computing, her research interests are in the theory
of computation and discrete mathematics with applications to
computer science.

